Min Value
Max Value

$\sin \theta$	$\mathbf{- 1}$	1
$\cos \theta$	0	1
$\operatorname{Sin}^{2} \theta$	$\cos ^{2} \theta$	

Questions on Min and Max Values

Type I

Exp3:- Find the min and max value of $2 \sin ^{2} \theta+3 \cos ^{2} \theta$
Sol: $\quad 2 \sin ^{2} \theta+3 \cos ^{2} \theta=2 \sin ^{2} \theta+2 \cos ^{2} \theta+\cos ^{2} \theta=2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\cos ^{2} \theta=2(1)+\cos ^{2} \theta$
Now since we have converted the given expression into such an exp where we have only 2 and $\cos ^{2} \theta$ since 2 is constant so min and max value of exp depends of min and max value of $\cos ^{2} \theta$. Means value of exp will be min when value of $\cos ^{2} \theta$ is min that is ' 0 '. If we take value of $\cos ^{2} \theta=0$ value of \exp becomes $2+0=2$ i.e. Min value of \exp is 2 . ||ly $M a x$ value of \exp is $2+$ $1=3$ (since max value of $\cos ^{2} \theta$ is 1)

SHORTCUT If we get a question of the type $a \cos ^{2} \theta+b \sin ^{2} \theta$ than min and M ax value of exp is

$$
\text { Min value of exp }=\operatorname{Min}(a, b)
$$

$$
\text { Max value of exp = M ax }(a, b)
$$

Type 2

Find the M in value of $a \sin ^{2} \theta+b \operatorname{cosec}^{2} \theta$
i.e. 2 Trig ratios where one is reciprocal of other Like in this case $\operatorname{cosec}^{2} \theta$ is reciprocal of $\sin ^{2} \theta$. In these types of questions examiner will always ask for M in value.

Shortcut formula for that is

Proof:
\exp with sq is ' 0 ')

Min Value of $\exp =2 \sqrt{a b}$

$$
\begin{aligned}
& a \sin ^{2} \theta+b \operatorname{cosec}^{2} \theta=(\sqrt{a} \sin \theta)^{2}+\left(\frac{\sqrt{b}}{\sin \theta}\right)^{2} \\
= & (\sqrt{a} \sin \theta)^{2}+\left(\frac{\sqrt{b}}{\sin \theta}\right)^{2}-2 \sqrt{a} \sin \theta \frac{\sqrt{b}}{\sin \theta}+2 \sqrt{a} \sin \theta \frac{\sqrt{b}}{\sin \theta} \\
= & \left(\sqrt{a} \sin \theta-\frac{\sqrt{b}}{\sin \theta}\right)^{2}+2 \sqrt{a b} \text { (we know that min value of } a
\end{aligned}
$$

Hence min value of $\exp =0+2 \sqrt{a b}=2 \sqrt{a b}$

Type 3 Find the $m i n$ and $m a x$ value of $a \sin \theta+b \cos \theta$

In these type of question Min value $=-\sqrt{a^{2}+b^{2}}$ and Max Value $=\sqrt{a^{2}+b^{2}}$

